Abstract
Skin cancer can be detected through visual screening and skin analysis based on the biopsy and pathological state of the human body. The survival rate of cancer patients is low, and millions of people are diagnosed annually. By determining the different comparative analyses, the skin malignancy classification is evaluated. Using the Isomap with the vision transformer, we analyze the high-dimensional images with dimensionality reduction. Skin cancer can present with severe cases and life-threatening symptoms. Overall performance evaluation and classification tend to improve the accuracy of the high-dimensional skin lesion dataset when completed. In deep learning methodologies, the distinct phases of skin malignancy classification are determined by its accuracy, specificity, F1 recall, and sensitivity while implementing the classification methodology. A nonlinear dimensionality reduction technique called Isomap preserves the data’s underlying nonlinear relationships intact. This is essential for the categorization of skin malignancies, as the features that separate malignant from benign skin lesions may not be linearly separable. Isomap decreases the data’s complexity while maintaining its essential characteristics, making it simpler to analyze and explain the findings. High-dimensional datasets for skin lesions have been evaluated and classified more effectively when evaluated and classified using Isomap with the vision transformer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have