Abstract

The present study evaluates the application of heterogeneous catalytic ozonation for the removal of micropollutants from wastewater effluent in a pre-industrial-scale unit, consisting of a post-filtration, an ozone dilution, a catalytic ozonation, and a final biological stabilization step. The important step of ozone dilution is optimized by the use of a hollow fiber membrane that minimizes the loss of ozone gas due to the transfer of ozone to the liquid phase mainly by diffusion. It is observed that the efficiency of this sub-system is maximized for the dead-end operation of the membrane and the introduction of ozone gas to the shell side and liquid phase to the lumen side of the membrane module. Under these conditions, the concentration of dissolved ozone is directly dependent on the ratio of ozone gas feed to the wastewater flow subjected to post-treatment. Regarding the removal of MPs, part of their degradation already takes place at this stage (i.e., during ozone dilution), while after the post-treatment of wastewater effluent in the catalytic ozonation bed, the MP degradation yield ranges from 35% up to complete removal, depending on the type and properties of the specific MP. The addition of a final biological filtration bed to the overall treatment unit significantly increased its performance, regarding the removal of MPs, enhancing it by an additional removal rate that can reach up to 30%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call