Abstract
Microcapsules containing various flavour/fragrance oils with different properties were fabricated using gelatine and gum arabic by complex coacervation. The surface properties (surface polarity and the spreading coefficients) of core oils were investigated in order to evaluate their effects on the capsule morphology and encapsulation efficiency based on a spreading coefficient and two component surface energy theory. Contact angles, interfacial tensions, and surface polarities were measured, and results were discussed with respect to the internal structure as well as encapsulation efficiency of different oil microcapsules. The thermodynamic spreading coefficients theory did not give an exactly accurate prediction of capsule morphology using high molecular weight biopolymer as the wall material in this work. Notwithstanding, the morphology predictions for different oil microcapsules are holistically consistent with the values of their encapsulation efficiency. Also, it has been found that the encapsulation efficiency increased with the decreasing surface polarity of the core oil holistically.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have