Abstract

The application of Gumbel (EVI) to the development of rainfall intensity– duration – frequency (IDF) curves has often been criticized on theoretical and empirical grounds as it may underestimate the largest extreme rainfall amounts. The consequences of underestimation are economic losses, property damages, and loss of life. Therefore, it is important that water resources engineering infrastructure be accurately design to avoid these consequences. This paper evaluates the performances of four probability distributions; GEV, EV1, LP3 and P3 using the annual maxima precipitation series of 26 years for Warri Metropolis obtained from Nigerian Meteorological Agency (NiMet). The strength and weakness of the four probability distributions were examined with the goodness of fit (GOF) module of Easyfit software which implemented Kolmogorov - Smirnov (KS) and Anderson - Darling (AD) tests at 5% significance level. The Easyfit software fitted the precipitation series data to the four probability distributions and ranked the four probability distributions across the fifteen rainfall durations. Results show that for both KS and AD tests, GEV distribution was found to be best-fit distribution and it was applied to the development of IDF curves in Warri Metropolis, Nigeria. Furthermore, the IDF values obtained were applied in the development of three-parameter IDF models for return periods of 10 - , 15 -, 20 -, 25 - , 50 -, and 100-years. The mean absolute error, Nash – Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE) indices computed for the IDF models increase with increasing return periods. The IDF curves and models depicted the general attributes of IDF curves and models. This study could be of significant academic value and improvement to professional practice in the design of storm water drainage systems. Therefore, the developed IDF curves and models are recommended to the Warri Urban Authority for inclusion in her stormwater handbooks and manuals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.