Abstract

The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

Highlights

  • Lignocellulose biomass (LCB), such as agricultural and forest residues, are considered to be a potential feedstock for the generation of renewable bioenergy [1, 2]

  • Eighty-one aerobic bacterial morphotypes were obtained from the gastrointestinal (GI) content of a ruminant goat and a non-ruminant indigenous pig (Zovawk)

  • Among the nutritional media used, actinomycetes isolation agar (AIA) was the most suitable medium, followed by starch casein agar (SCA), Luria Bertani (LB) medium and tryptone soy agar (TSA), which resulted in recoveries of 29, 25, 19 and 8 isolates, respectively (Table 1)

Read more

Summary

Introduction

Lignocellulose biomass (LCB), such as agricultural and forest residues, are considered to be a potential feedstock for the generation of renewable bioenergy [1, 2]. Bioenergy has gained immense interest, primarily because of concerns such as the depletion of non-renewable fossil fuels, global warming and the universal call for cleaner environments [3,4,5]. LCB can serve as an economical source of fermentable sugar for second generation bioethanol production [6, 7]. LCB represents the most abundant organic matter in nature, composed of an interlinked matrix of cellulose and hemicellulose along with glycosylated proteins and lignin polymer moieties [8] that resist bioconversions.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.