Abstract
Ductile fracture mechanism in fine‐grained high‐strength dual phase steel in sheet form, which incorporated martensite particles in a soft ferrite matrix, was studied through extensive quantitative metallography, scanning electron microscopy (SEM), and electron backscattered diffraction (EBSD) observations of polished sections as well as fracture surfaces analysis of failed specimens. The void characteristics in terms of area fraction, density, and average size were examined as a function of thickness strain in the sectioned specimens. Detailed microstructural analysis revealed that interface decohesion at triple junctions of ferrite–ferrite–martensite was the dominant void nucleation mechanism. EBSD analysis also revealed that void nucleation was predominantly promoted by the increase of ferrite–ferrite grain boundary misorientation with strain, especially at the boundaries incorporating adjacent martensite particles. Moreover, the study of voids nucleation and evolution behavior suggested that ductile fracture in this steel was nucleation controlled such that just before the final fracture incidence, a high density of voids would be nucleated or a sudden accelerated void nucleation could happen. Microscopic observations as well as statistical analysis confirmed this phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.