Abstract

ABSTRACTThe application of ferroelectric thin films for the development of frequency and phase agile microwave components has been the reason behind very encouraging demonstrations of tunable microwave devices in recent years. Thus, one could conclude with basically a general consensus, that the question of the suitability of thin film ferroelectric technology for the fabrication of superior tunable microwave components has been already answered in a favorable way. However, what is still pending in regards to the validation of this technology is the development of evaluation methodologies to set forth the standards for the material quality and subsequent performance criteria of specific components and devices based on this technology. In this paper we discuss the evaluation methodology under implementation at NASA Glenn Research Center aimed at identifying and optimizing the most relevant parameters of BaxSr1−xTiO3 (BSTO) ferroelectric thin films (i.e., tunability, losses, thickness, crystalline quality, etc.) as defined by a specific microwave application (in our case, phase shifters for reflectarray antennas). Results of our material analysis based on X-ray diffraction and ellipsometry, and how these properties correlate with RF performance for a targeted circuit, will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.