Abstract

The application of press hardening steels is spreading from automobiles, where crashworthiness demands are critical, to other segments, such as the agricultural and road transport industries. However, the operational conditions to which such equipment is exposed requires the application of heavier sheet gages and adapted joining processes. In this context, fatigue is recognized as the critical failure mode. The present article describes the procedures and results of fatigue testing performed on GMAW-CSC and PAW butt-welded specimens of 1500 MPa press hardening steel. Both methods are suitable alternatives to laser welding when joining relatively heavy-gaged components. The obtained fatigue results are also related to heat-affected zone characteristics and weld bead surfaces. Additionally, some ground-flush GMAW-CSC specimens were tested. The test results indicate that both welding procedures provide suitable fatigue performance. As-welded GMAW-CSC joints on this ultra-high strength steel accomplished a fatigue performance similar to welds of conventional steel. However, a remarkable performance increase was observed after flush grinding the weld beads. The plasma welding process presented less good results due to the more extensive manufacturing and geometric variability. The results indicate that adopting a suitable arc welding process, in association with post-weld geometry improvement, provides a fatigue performance that is competitive with laser-welded press hardening steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.