Abstract

Resistance spot welding (RSW) of Al-Si-coated PHS was undertaken, and the effect of Al-Si coating on nugget formation and mechanical properties was investigated. Press-hardened steel (PHS) has long been applied to automotive body structure construction to support mass and corresponding greenhouse gas emission reductions. PHS materials are often combined with an Al-Si coating applied as an oxidation barrier though unfortunately, the Al-Si coating poses a challenge to the resistance spot welding (RSW) of PHS containing stack-ups. As a newly developed coating for the hot stamping process, the property of Al-Si coating is different from base metal and traditional coatings, and the influence mechanism of Al-Si coating on the welding process is not clear. It would remain at nugget edge and might cause severe stress concentration. To investigate this problem, RSW of 1.5-mm Al-Si-coated PHS was undertaken, and the results indicate that a large portion of the Al-Si coating is extruded and forms a sharp notch close to the nugget edge during the welding process. During the post-weld cooling stage, a thin layer of residual coating is formed between the nugget and notch root. The mechanical performance of the welded joints is limited by the thin residual Al-Si layer which acts as a preexisting crack and supports the interfacial fracture. The presence of the Al-Si coating at the faying interface also significantly delays nugget formation, though it contributes to a larger nugget size by inhibiting expulsion events at the faying interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call