Abstract

A non-equilibrium mechanism for nanosecond laser ablation is suggested herein, and its predictions are compared to the results of W experiments performed under vacuum conditions. A mechanism of particle formation is explained via this model, with partial sublimation of the superheated irradiated zone of the target considered to be the mechanism of laser ablation. In this study, a mixture of vapor and particles was explosively generated and subsequently prevented the rest of a laser pulse from reaching its intended target. This mechanism was found to play an essential role in the ablation of W under vacuum conditions, and it provides a theoretical justification for particle formation. Moreover, special considerations were taken into account for the expansion of plasma into a vacuum. The model was evaluated by measuring the mass of ablated particles using a quartz crystal deposition monitor and time-resolved optical emission spectroscopy. The results of this model were found to be in good agreement with experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.