Abstract
Molecular mechanisms of nanosecond and femtosecond laser ablation and morphology-changing dynamics of neat liquid benzene derivatives, such as benzyl chloride and toluene, were investigated by photoacoustic measurement, nanosecond shadowgraphy, femtosecond surface light scattering imaging, and time-resolved ultraviolet−visible absorption spectroscopy. Ablation thresholds of the liquids were determined by photoacoustic measurement and shadowgraphy, whereas primary processes in ablation were elucidated by time-resolved absorption spectroscopy. Femtosecond surface light scattering imaging revealed how electronic excited/radical states evolved to nanometer morphological changes. In nanosecond laser ablation, ablation threshold value was related to photochemical reactivity producing benzyl radical; however, no correlation between the threshold and boiling point was confirmed. Indeed, a benzyl radical absorption band was clearly observed. Moreover, benzyl radical concentration at the threshold was estimated qua...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.