Abstract

Many water providers monitor adenosine triphosphate (ATP) as an indicator of biological acclimation of their biofilters; however, strong correlations between ATP concentration and filter performance (e.g., organic matter or disinfection by-product precursor removal) are not typically observed. As an alternative, this study evaluated the use of enzyme activity for monitoring biological processes within filters. Recent studies have proposed that enzyme activity may be used as an indicator of biofilter function as it provides a means to quantify biodegradation which may allow for a more accurate measure of degradation potential and to gain a better understanding of biofilter performance. Sampling was completed from full- and pilot-scale biofilters to assess impacts associated with pre-treatments, varying sources waters, as well as pre-treatment and operating conditions. Enzyme activity (carboxylic esterase, phosphatase, ß-glucosidase, α-glucosidase, ß-xylosidase, chitinase, and cellulase) and ATP were measured from the top 5 cm of biofilter media representative of typical full-scale sampling; water quality parameters included dissolved organic carbon (DOC) and disinfection by-products (DBPs): trihalomethane (THM) formation potential (FP), and haloacetic acid FP (HAA FP). Results confirmed that ATP was not a reliable monitoring tool for DOC and DBP FP reduction in biofilters. A strong relationship was observed between esterase activity and DOC reduction; chitinase activity significantly correlated to THM FP reduction for filters treating three different source waters and HAA FP reduction achieved by filters treating the same source water with a range of pre-treatment and backwash conditions. This study showed that enzyme activity may be appropriate for monitoring biological processes within drinking water filters and may act as a surrogate for the removal of organic compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.