Abstract

Cell-based models provide a helpful approach for simulating complex systems that exhibit adaptive, resilient qualities, such as cancer. Their focus on individual cell interactions makes them a particularly appropriate strategy to study cancer therapies’ effects, which are often designed to disrupt single-cell dynamics. In this work, we propose them as viable methods for studying the time evolution of cancer imaging biomarkers (IBM). We propose a cellular automata model for tumor growth and three different therapies: chemotherapy, radiotherapy, and immunotherapy, following well-established modeling procedures documented in the literature. The model generates a sequence of tumor images, from which a time series of two biomarkers: entropy and fractal dimension, is obtained. Our model shows that the fractal dimension increased faster at the onset of cancer cell dissemination. At the same time, entropy was more responsive to changes induced in the tumor by the different therapy modalities. These observations suggest that the prognostic value of the proposed biomarkers could vary considerably with time. Thus, it is essential to assess their use at different stages of cancer and for different imaging modalities. Another observation derived from the results was that both biomarkers varied slowly when the applied therapy attacked cancer cells scattered along the automatons’ area, leaving multiple independent clusters of cells at the end of the treatment. Thus, patterns of change of simulated biomarkers time series could reflect on essential qualities of the spatial action of a given cancer intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.