Abstract

Soil improvement method using enzymatic activity from bacteria Bacillus pasteurii that able to catalyse urea and calcium chloride enabling cementation solution has become an emerging approach to increase the shear strength of sand. The production of urease enzyme of B. pasteurii will be increased using specific medium. Determination of the volume of bacteria needed is based on the soil porosity is studied and analysed. The preliminary result of B. pasteurii that use specific medium could increase the urease enzyme activity and already verified using urease measurement kit. The treatment period required for the initiation of production of cementing material (calcite) has been reduced from one month to 3 days, while using this specific medium for enzyme urease production. This leads to the rapid filling of the soil pores that result in the hardening of soil. The bonding between the soil particles also increases that leads to increase in the density of soil. The final results of shear improvement are obtained by conducting Direct shear test and Unconfined compression test on sandy and silty soils respectively. Finally the cohesion between the soil particles was identified through the permeability test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.