Abstract
Acid mine drainage (AMD) generated from the mining industry elevates environmental concerns due to the pollution and contamination it causes to bodies of water. Over the years, passive treatment of AMD using alkalinity-generating materials have been widely studied with pH neutralization as its commonly observed mechanism. During the treatment process, heavy metal removal is also promoted by precipitation due to pH change or through adsorption facilitated by the mineral component of the materials. In this study, four materials were used and investigated: (1) a low grade ore (LGO) made up of goethite, calcium oxide, and manganese aluminum oxide (2–3) limestone and concrete aggregates (CA) composed of calcite, and (4) fly ash consisting of quartz, hematite, and magnetite. The performance of each alkalinity-generating agent at varying AMD/media ratios was based on the change in pH, total dissolved solids (TDS), oxidation reduction potential (EH); and heavy metals (Fe, Ni, and Al) removal and sulfate concentration reduction. Concrete aggregate displayed the most significant effect in treating AMD after raising the pH to 12.42 and removing 99% Fe, 99% Ni, 96% Al, and 57% sulfates. Afterwards, the efficiency of CA at various particle sizes were evaluated over 1 h. The smallest range at 2.00–3.35mm was observed to be most effective after 60 min, raising the pH to 6.78 and reducing 94% Fe, 78% Ni, and 92% Al, but only 28% sulfates. Larger particles of CA were able to remove higher amounts of sulfate up to 57%, similar to the jar test. Overall, CA is an effective treatment media for neutralization; however, its performance can be complemented by a second media for heavy metal and sulfate removal.
Highlights
Acid mine drainage (AMD) is known as one of the worst environmental problems worldwide related to mining, mineral processing operations, and other large-scale excavations [1,2]
Low-grade nickel ore (LGO), limestone, fly ash, and concrete aggregates were the four locally available neutralizing agents compared based on their efficiencies in treating acid mine drainage (AMD)
Fly ash was obtained from a coal-fired power plant situated in Bataan, Philippines; while concrete aggregates were collected from a local construction site in Manila, Philippines
Summary
Acid mine drainage (AMD) is known as one of the worst environmental problems worldwide related to mining, mineral processing operations, and other large-scale excavations [1,2]. It is characterized by low pH and high concentrations of sulfate, heavy metals, and other toxic elements, which cause negative effects to the surrounding areas [3,4]. In the Philippines, the mining industry has significantly contributed to the economy with. Minerals 2020, 10, 845 an estimated $840 billion worth of mineral wealth that had not been extracted as of 2012 [7]. In 2019, the industry contributed 0.6% to GDP and 6% of the total exports, which amounted to approximately
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.