Abstract

PurposeThe purpose of this paper is to analyze the effect of printing parameters on the mechanical properties of standard dog bone specimens manufactured by fused deposition modeling.Design/methodology/approachPolylactic acid (PLA) specimens were printed and tested according to the ASTM standard. The effect of five important printing parameters, layer height, raster angle, printing speed, nozzle temperature and nozzle diameter, was examined on ultimate tensile strength (UTS), elongation and apparent density. Five levels were attended for each parameter, and a high number of required experiments were reduced by applying the L25 Taguchi design of the experiment.FindingsThe effect of each parameter on outputs and optimal values for maximum tensile strength were determined. The most influential parameter is the raster angle of 64.96%. Nozzle temperature has a low effect of 1.76%, but nozzle diameter contribution is 9.77%. The experiment results are validated by analysis of variance analysis, and the optimal predicted level for parameters is 90° raster angle, 0.2 mm layer height, 100 mm/s printing speed, 200°C nozzle temperature and 0.8 mm nozzle diameter. The maximum UTS observed is 48.70 MPa for 0.8 mm nozzle diameter, whereas the minimum is 18.49 for 0.2 mm nozzle diameter.Originality/valueThis paper is a very extensive experimental research report on the effect of the parameters for the tensile property of 3D printed PLA specimens by the Taguchi method. The documented results can be further developed for an optimization model to obtain a desired mechanical property with less variation and uncertainty in a product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call