Abstract

Recently, applications of three-dimensional (3-D) printers have extensively been increased in various industries. Fused deposition modeling process is one of the most widely used 3-D printing methods in this area due to its simplicity, reliability, and the ability to produce complex parts made of thermoplastic materials. In this research, composite sample parts consisted of copper particles with a constant 25 wt% of metallic powder as a filler and acrylonitrile butadiene styrene granules as a polymeric matrix. A filament production line to acquire printable filaments was applied and its optimum parameters were reported. Four printing parameters involved nozzle diameter, layer height, raster angle, and nozzle temperature were chosen in three levels for investigation of composite samples’ tensile strength, density, and production time as a new study. The Taguchi method, a well-known design of experiment tool, was employed to find the effect of each parameter and optimum levels with including the main effect, signal-to-noise ratio, and analysis of variance. Finally, optimum composite specimens manufactured by 3-D printer verified Taguchi method analysis and results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call