Abstract
Biomarkers of exposure and effect were assessed in 40 male Sprague-Dawley rats injected intravenously with 40 micromol/kg of benzo(a)pyrene (BaP) to determine which biomarkers are more representative of BaP-induced DNA damage in lung. Lung, liver, blood, and urine were collected at t = 2, 4, 8, 16, 24, 33, 48, 72, and 360 h postdosing. Specific BaP-diol epoxide (BPDE)-DNA adducts, 8-hydroxy-7,8-dihydro-2'-deoxyguanosine (8-OHdGuo), were measured in lung, liver, and mononucleated blood cells by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Urinary 8-OHdGuo and 8-hydroxy-7,8-dihydroguanosine (8-OHGuo) were also determined by HPLC-MS/MS, and urinary 3-hydroxybenzo(a)pyrene was measured by HPLC/fluorescence. Between 2 and 72 h postdosing, BPDE-DNA adducts were significantly increased in lung, liver, and mononucleated blood cells of BaP-treated rats as compared to controls, with the highest levels found in lung. 8-OHdGuo levels also increased in lung of BaP-treated rats with values reaching statistical significance at 2, 8, and 16 h postinjection. No influence of BaP treatment was found on 8-OHdGuo and 8-OHGuo urinary excretions. BPDE-DNA adducts in lung were strongly correlated to urinary 3-OHBaP (r = 0.936 and p < 0.001) and to a lesser extent to blood BPDE-DNA adducts (r = 0.636 and p < 0.001), the latter of which were correlated to each other (r = 0.573 and p = 0.002). Urinary 3-OHBaP and BPDE-DNA adducts in mononucleated blood cells appear as relevant biomarkers of BaP genotoxic exposure and are highly promising for health risk assessment in humans.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have