Abstract

Because of its application potential and biodegradability, poly(3-hydroxybutyrate-co-3-hydroxyvalerate;PHBV), a member of the polyhydroxyalkanoates (PHA) biopolymer family, is one of the most extensively studied PHA. High PHBV productivity with a significant amount of hydroxyvalerate (HV) content is very appealing for commercial scale production. The goal of this study was to investigate the efficiency of various defined limitation strategies, namely nitrogen, phosphorus, and oxygen-limitation, for high yield PHBV production by Cupriavidus necator H16 with increased HV unit using waste frying vegetable oil (WFO) and propionic acid (PA) in a high cell density culture (5 L bioreactor). With optimized WFO and PA feeding, highest PHBV harvest (121.7 ± 2.59 g/L; HV 13.9 ± 0.44% (w/w)) and volumetric productivity (2.03 ± 0.04 gPHBV/L·h) were obtained in oxygen-limited operation, while highest HV content (19.8 ± 0.28 wt%) and yield coefficient (0.43 ± 0.017 gHV/gPA) were observed during phosphorus-limited cultivation. Although nitrogen limitation is widely applied in the production of PHA, nitrogen-limited cultivation had the lowest cell dry matter, PHBV production, volumetric productivity, oil-to-HB and PA-to-HV yield coefficients for the given conditions. The results of the present study demonstrate the highest PHBV yield together with the highest HV content using WFO as main carbon source and PA as the HV precursor ever reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call