Abstract
A great need exists for the identification of new effective analgesics to treat sustained pain. However, most preclinical nociceptive assays measure behavioral responses evoked by noxious stimuli (ie, pain-stimulated behavior), which presents a challenge to distinguish between motor impairing and antinociceptive effects of drugs. Here, we demonstrate that chronic constriction injury (CCI) of the sciatic nerve elicits common pain-stimulated responses (ie, mechanical allodynia and thermal hyperalgesia) as well as reduces marble burying/digging behaviors that occur during the early stages of the neuropathy and resolve within 1 week. Although drugs representing distinct classes of analgesics (ie, morphine, valdecoxib, and gabapentin) reversed both CCI-induced and CCI-depressed nociceptive measures, diazepam lacked antinociceptive effects in all assays and the kappa-opioid receptor agonist U69593 reversed pain-stimulated, but not pain-depressed behaviors. In addition, we tested drugs targeting distinct components of the endocannabinoid system, including agonists at cannabinoid receptors type 1 (CB1) and type 2 (CB2), as well as inhibitors of the endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase. Each of these drugs reversed all CCI-induced nociceptive measures, with the exception of the fatty acid amide hydrolase inhibitor that reversed pain-stimulated behaviors, only. These findings support the use of the mouse marble-burying assay as a model of pain-depressed behavior within the first week of sciatic nerve injury to examine candidate analgesics. These data also support existing preclinical research that cannabinoid receptor agonists and inhibitors of endocannabinoid-regulating enzymes merit consideration for the treatment of pain.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have