Abstract

The dendrite morphology of unidirectionally solidified Al-Si alloys was evaluated by measuring the fractal dimension and dimensionless perimeter of dendrites. In an unidirectional solidification experiment, columnar crystals grew from a bottom chill and columnar to equiaxed transition (CET) occurred at the upper part of an ingot. Then, equiaxed crystals were formed at the top of the ingot. Different dendrite morphology was observed in longitudinal, transverse and oblique sections, however, the fractal dimension or dimensionless perimiter of the dendrites in the sections with same local solidification time showed same values, and continuously decreased with increase in the local solidification time through columnar, CET and equiaxed regions. It can be considered that the fractal dimension and dimensionless perimiter of dendrites are controlled by local solidification time and irrespective of dendrite morphology. This result demonstrated the potential of the fractal dimension and dimensionless perimiter as a parameter for estimating local solidification time of an ingot in which the measurement of SDAS is difficult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.