Abstract

Delamination is recognized as one of the most critical defects that can result from the machining composites. Delamination has been a major form of failure in drilled composite materials due to the composites lack of strength in the drilling direction, which results in poor surface finish, reduction in bearing strength, reduction in structural integrity and ultimately poor performance of the composite. Currently, most of the major research reported delamination address specific of machining fiber glass, graphite fiber or carbon fiber reinforced polymer composites. It is not yet clear how different drilling parameters affect the machinability of natural fiber reinforced polymer composite materials and quality of drilled holes. This paper report the investigation in drilling holes on natural fibre reinforced polyester composites and evaluate its hole quality by measuring delamination. Three different type of drill: twist 118o drill, brad drill and end mill were used. Drilling process is carried out for three spindle speed (1500 rpm, 2000 rpm and 2500 rpm) and three feed rate (0.1 mm/rev, 0.15 mm/rev and 0.2 mm/rev). Brad drill experienced higher delamination values compared to twist and end mill. Increasing of feed rate and spindle speed also caused a relevant increase in the delamination values. It is found that Rice husk reinforced polyester composites delamination value is lower when compared to the glass fiber reinforced polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.