Abstract

The machining of titanium has been understood to be challenging and costly due to its material properties such as low thermal conductivity, low modulus of elasticity, high strength at elevated temperatures and chemical reactivity. This work aims to study the effect of iron as a partial substitution along with cobalt binder as the tool material for machining of titanium alloy. In this work, iron-rich binder tool (WC-Co-Fe) and cobalt binder tool (WC-Co) samples were produced by powder metallurgy route using powders with a mean particle size of less than 0.5 μm. Next, the evaluation of mechanical properties and phase analysis were performed. Turning experiments were conducted at various cutting speeds, feed and depth of cut (DOC), to evaluate the effects of iron-rich binder on flank wear, cutting forces and cutting temperature. The obtained results of turning experiments reveal that iron-rich binder tends to increase cutting performance in comparison to conventional WC-Co composite cutting tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.