Abstract
A 2-year field experiment was conducted with the objectives to evaluate the physiological and yield response of quinoa cv Titicaca to various deficit irrigation strategies applied with surface drip (SD) and subsurface drip systems (SSD) under the Mediterranean climatic conditions in 2016 and 2017. The treatments consisted of regulated deficit irrigation (RDI), partial root-zone drying (PRD50), conventional deficit irrigations (DI50, DI75) and full irrigation (FI) under SD and SSD. A rainfed treatment was also included. The experimental design was split plots with four replications. DI75 and DI50 received 75 and 50% of FI, respectively. PRD50 plots received 50% of FI, but from alternative laterals in each application. RDI received 50% of FI during vegetative stage until flowering, then received 100% of water requirement. The results indicated that RDI resulted in water saving of 23 and 21% for surface drip (SD) and SSD systems, respectively, and RDI produced statistically similar yield to FI treatment in both experimental years. DI75 treatment resulted in water savings of 16% for both drip methods in the first year and 10 and 25% for SD and SSD systems, respectively, in the second year. Thus, RDI and DI75 treatments appear to be good alternative to FI for sustainable quinoa production in the Mediterranean environmental conditions. Greater leaf water potential (LWP) and smaller crop water stress index (CWSI) values were measured in FI plots under both drip systems than deficit irrigation treatment plots. Significant second-order polynomial relations were determined between CWSI and LWP for the drip systems. Leaf area index (LAI), LWP decreased and CWSI increased as the drought increased. CWSI correlated significantly (P < 0.01) and negatively with grain yield, dry matter yield, LAI, and mean soil water content indicating that grain yield of quinoa declined with increasing CWSI values. All these relations are best described by significant second-order polynomial equations. The results revealed that quinoa should be irrigated at LWP values between − 1.35 and − 1.60 MPa, and average CWSI value of approximately 0.35 for high yields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.