Abstract

The effective application of the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system in biology, medicine and other fields is hindered by the off-target effects and loci-affinity of Cas9-sgRNA, especially at a genome-wide scale. In order to eliminate the occurrence of off-target effects and evaluate loci-affinity by CRISPR/Cas9 site-specific detection and screening of high-affinity sgRNA sequences, respectively, we develop a CRISPR/Cas9-assisted reverse PCR method for site-specific detection and sgRNA sequence validation. The detection method based on PCR can be used directly in the laboratory with PCR reaction conditions, without the need for an additional detection system, and the whole process of detection can be completed within 2 h. Therefore, it can be easily popularized with a PCR instrument. Finally, this method is fully verified by detecting multiple forms of site mutations and evaluating the affinity of a variety of sgRNA sequences for the CRISPR/Cas9 system. In sum, it provides an effective new analysis tool for CRISPR/Cas9 genome editing-related research.Graphical abstract A CRISPR/Cas9-assisted reverse PCR method was developed for Cas9/sgRNA site-specific detection and sgRNA sequence validation. The technique detects target DNA in three steps: (1) target DNA is specifically cut by a pair of Cas9/sgRNA complexes; (2) the cleaved DNA is rapidly linked by T4 DNA ligase; (3) the ligated DNA is efficiently amplified by PCR (PCR or qPCR). Supplementary InformationThe online version contains supplementary material available at 10.1007/s00216-021-03173-2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.