Abstract
High Cr ferritic heat resisting steels have been widely used for boiler components in ultrasupercritical thermal power plants operated at about 600°C. In the welded joint of these steels, type-IV crack initates in the fine-grained heat affected zone during long-term use at high temperatures and their creep strength decreases. In this paper, creep properties and creep crack growth (CCG) properties of P92 welds are presented. The CCG tests are carried out using cross-welded compact tension C(T) specimens at several temperatures. The crack front was located within the fine-grained HAZ region to simulate type-IV cracking. Finite element analysis was conducted to simulate multiaxiality in welded joints and to compare experimental results. The constitutive behavior for these materials is described by a power-law creep model. C∗ and Q∗ parameters are used to evaluate CCG rate of P92 welds for comparison. C∗ parameters can characterize approximately 20% of the total life of CCG in P92 welds, and Q∗ parameters can characterize approximately 80% of the total life. Q∗ parameter is one of the useful parameters to predict CCG life in P92 welds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.