Abstract

The influence of local microstructure on the fracture process at the crack tip in a ceramic–metal composite was assessed by comparing the measured stress at a microstructural level and analogous finite element modelling (FEM). Fluorescence microprobe spectroscopy was used to investigate the influence of near-crack-tip stress fields on the resulting crack propagation at the microstructural scale. The high spatial resolution was effective at mapping the localized crack-tip stress distributions within the complex Al–Al 2O 3 phase morphologies, where the localized stress distribution about the crack tip within the Al 2O 3 phase could be measured. Regions of high-localized tensile stress within the microstructure resulting from a combination of applied load and thermal residual stress were identified and could be used in predicting the subsequent crack extension direction. Stress distributions calculated from spectroscopy results were compared with microstructural level FEM of the same structure and general agreement between the two techniques was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.