Abstract

The objective of the present investigation was to explore the potential of Chitosan based polymeric matrices as carrier for sustained stomach specific delivery of model drug Propranolol Hydrochloride. Briefly, single unit hydrodynamically balanced (HBS) capsule formulations were prepared by encapsulating in hard gelatin capsules, intimately mixed physical mixtures of drug, and cationic low molecular weight Chitosan (LMCH) in combination with either anionic medium viscosity sodium alginate (MSA) or sodium carboxymethylcellulose (CMCNa). The effect of incorporation of nonionic polymers, namely, tamarind seed gum (TSG) and microcrystalline cellulose (MCCP), was also investigated. It was observed that HBS formulations remained buoyant for up to 6 h in 0.1 M HCl, when LMCH : anionic/nonionic polymer ratio was at least 4 : 1. It was also observed that LMCH has formed polyelectrolyte complex (PEC) with MSA (4 : 1.5 ratio) and CMCNa (4 : 1 ratio) in situ during the gelation of HBS formulations in 0.1 M HCl. The retardation in drug release was attributed to the PEC formation between LMCH and MSA/CMCNa. Incorporation of MCCP (rapid gel formation) and TSG (Plug formation) was found to be innovative. From the data, it is suggested that Chitosan based polymeric matrices may constitute an excellent carrier for stomach specific drug delivery.

Highlights

  • It has always been difficult to engineer polymers or polymeric compositions for stomach specific drug delivery [1,2,3]

  • The engineered polymeric compositions should have attributes that are pertinent to high level of gastric retention, generally 5-6 h [4, 5], release the drug at zero-order or at a constant rate [6, 7], and degrade in vivo to smaller fragments, which can be excreted from the body; their degradation products must be nontoxic and not create an inflammatory response; and they should degrade within a reasonable period of time [1, 2]

  • The linearity of Chitosan molecules ensures sufficient flexibility for interpenetration. It possesses cell-binding activity due to its polymer cationic polyelectrolyte structure and to the negative charge of the cell surface [8,9,10,11]. This material has already been extensively investigated in the design of different types of drug delivery systems, it is still less explored for stomach specific drug delivery systems

Read more

Summary

Introduction

It has always been difficult to engineer polymers or polymeric compositions for stomach specific drug delivery [1,2,3]. The mucoadhesive property of Chitosan is due to electrostatic interaction of the protonated amino group in Chitosan with negatively charged silicic acid residues in mucin (the glycoprotein that composes the mucus). This interaction takes place very close to the mucosal surface and possesses potential to confer significant gastroretention to the hydrogel. The linearity of Chitosan molecules ensures sufficient flexibility for interpenetration It possesses cell-binding activity due to its polymer cationic polyelectrolyte structure and to the negative charge of the cell surface [8,9,10,11]. The objective of the present investigation is to explore the potential of this wonderful material in combination with anionic/nonionic natural polysaccharides like sodium alginate, sodium carboxymethylcellulose, microcrystalline cellulose, and tamarind seed gum in the fabrication of stomach specific single unit HBS capsule formulations using

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call