Abstract

Caladiums (Caladium × hortulanum) are widely grown for their bright colorful leaves. Pythium root rot, caused primarily by P. myriotylum, is one of the most important diseases in caladiums. This disease can dramatically reduce plant growth, impact plant aesthetical value, and lower tuber yield. Pythium infection in the roots may also lead to subsequent entry of Fusarium into tubers resulting in tuber rot. There has been a strong interest in the tuber production and greenhouse plant production industries to identify cultivars that are resistant or tolerant to Pythium. However, few studies have been conducted since the pathogen was identified, and little information is available regarding the existence of any possible resistance in commercial cultivars. Pythium isolates were made from diseased plants collected from different sites; their pathogenicity was confirmed using tissue culture-derived plants. Procedures were developed for oogonia spore production, inoculation, and disease severity assessment. Nineteen major commercial cultivars were inoculated at two spore densities and then maintained in greenhouses under growing conditions favorable for root rotting. Plant appearance, leaf characteristics and severity of root rotting were evaluated 2-3 times after inoculation. Observations indicated that the isolates were highly virulent. They induced visible root rot within 3-5 days, and caused a complete loss of the root system and plant death for some cultivars within 2-3 weeks after inoculation. Several cultivars, including `Candidum' and `Frieda Hemple' which are widely grown cultivars, had much less root rot, higher plant survival, and seemed to have moderate levels of resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call