Abstract

The 4H-SiC Schottky barrier diodes for high temperature operation over 200 °C have been developed using buried grids formed by implantation. Compared to a conventional JBS-type SBD with surface grid (SG), JBS-type SBD with buried grid (BG) has significantly reduced leakage current at reverse bias due to a better field shielding of the Schottky contact. By introducing the BG technology, the 1.7 kV diodes with an anode area 0.0024 cm2(1 A) and 0.024 cm2(10 A) were successfully fabricated, encapsulated in TO220 packages, and electrically evaluated. Two types of buried grid arrangement with different grid spacing dimensions were investigated. The measured I-V characteristics were compared with simulation. The best fit was obtained with an active area of approximately 60 % and 70 % of the anode area in large and small devices, respectively. The measured values of the device capacitances were 1000 pF in large devices and 100 pF in small devices at zero bias. The capacitance values are proportional to the device area. The recovery behavior of big devices was measured in a double pulse tester and simulated. The recovery charge, Qc, was 18 nC and 24 nC in simulation and measurement, respectively. The fabricated BG JBS-type SBDs have a smaller maximum reverse recovery current compared to the commercial devices. No influence of the different grid spacing on the recovery charge was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call