Abstract

Bonded concrete overlay of asphalt (BCOA), previously known as ultra-thin whitetopping (UTW), has been widely used to repair aged asphalt concrete (AC) pavements with moderate distresses. Because of the increasing costs of roadway maintenance, Louisiana has a great interest in determining whether thin BCOA (usually 2–6 in.) is a suitable and cost-effective alternative to the current practice of roadway maintenance. The objective of the study was to evaluate the performance of BCOA pavement and to identify the influence of in-situ interface bond strength on the performance of BCOA pavements. Three full-scale BCOA test sections with thicknesses of 6 in., 4 in., and 2 in. of Portland cement concrete (PCC) over an aged asphalt pavement were tested under accelerated pavement test (APT) loading under typical pavement conditions in southern Louisiana. Each section was trafficking-loaded to a failure (i.e., all the slabs in the loading path were cracked) under alternating load magnitudes of 9 kips and 16 kips of the ATLaS dual-tire wheel load. A falling weight deflectometer (FWD) backcalculated the effective thickness, a trench-cutting investigation was undertaken, and in-situ pull-off test revealed that a good bond was established initially between the PCC and AC layer. Several non-destructive test (NDT) methods indicated that the distresses of a BCOA slab could be coupled with a possible debonding at the PCC-asphalt interface. This paper mainly focuses on the APT results and the performance of BCOA test sections with different overlay thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call