Abstract

In our previous paper, thermally assisted hydrolysis and methylation-gas chromatography (THM-GC) measurements of poly(butylene succinate-co-butylene adipate) (PBSA) in the presence of tetramethylammonium hydroxide had revealed that the butylene adipate (BA) content in the PBSA films gradually decreased with soil burial degradation time. In order to clarify the cause of this change in copolymer composition, biodegradation behavior of PBSA with lowered crystallinity was evaluated by THM-GC. PBSA film samples with lower degree of crystallinity, prepared by heating and cooling quickly the original commercially available films, were subjected to a soil burial biodegradation test at 30°C for up to 4 weeks. The copolymer compositions between BA and butylene succinate (BS) units in various stages of the degraded film samples were estimated on the basis of chromatograms obtained by THM-GC with less than 5% of the relative standard deviations. As a result, the change in copolymer composition for the heated PBSA films during soil burial was relatively small compared to the original films, suggesting that biodegradation for the heated films proceeded with the comparable rate for both BA and BS-rich moieties due to lowered crystallinity. Based on these results, the reason for the change in copolymer composition observed for the original PBSA films was clarified as follows: (1) the BA-rich moieties in the copolymer chains could show relatively lower crystallinity than the BS-rich moieties and (2) the BA-rich moieties were preferentially biodegraded during soil burial test, leading to the decrease in the BA content as the biodegradation proceeded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.