Abstract
Photoluminescence measurement of a tensile-strained (TS) Ge thin film grown on In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> As by molecular beam epitaxy has been carried out to verify the strain-induced band gap narrowing (SIBGN) of Ge, which is one of the most important properties of TS Ge for its solar cell application. The SIBGN of both the direct and indirect gaps of 0.56 % TS Ge have been observed, which well correspond to the theoretical prediction. After that, a “stressor-free” TS Ge/ ZnO/ glass substrate structure is demonstrated as a first step for the fabrication of TS Ge thin film solar cells. TS Ge films can maintain its initial tensile strain after eliminating In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> As stressor layer due to the strain keeping ability of the ZnO layer. These achievements constitute significant steps toward the application of TS Ge to high-efficiency MJ solar cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have