Abstract
The aim of this study was to test in vitro the bacterial microleakage at the Morse taper implant-abutment connection with switched platform subjected to functional load and thermocycling. A total of 48 Morse taper implant-abutment connections with switched platforms (12 implants per group) were used. The abutments were attached to implants and presented in four groups: group 1, control; group 2, subjected to thermocycling; group 3, subjected to cyclic compressive loading; and group 4, subjected to thermocycling and cyclic compressive loading. All groups were then inoculated in Eppendorf tubes including three types of bacterial suspensions: Enterococcus faecalis, Staphylococcus aureus, and Pseudomonas aeruginosa for 7 and 14 days to detect possibility of bacterial infiltration from outside to the internal chamber of the implant. Implants not exposed to cyclic loading and thermocycling (group 1) and those exposed to thermocycling (group 2) exhibited no infiltration of E faecalis, S aureus, and P aeruginosa from outside to the inner chamber of the implant, while infiltration of P aeruginosa was only observed in implants subjected to cyclic loading only (group 3) and those subjected to cyclic loading in conjunction with thermocycling (group 4). Microbial leakage at the implant-abutment connection is influenced by the applied load alone and in combination with thermocycling; however, E faecalis and S aureus did not leak at the implant-abutment connection even under these circumstances. Only P aeruginosa infiltrated inside the implant-abutment connection, which might be caused by its swarming motility.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have