Abstract

The onset of resistance to artemisinin for malaria treatment has stimulated the quest for novel antimalarial drugs. Herein, the gold(III) coordination complexes Aubipy [Au(bipy)Cl]+ (bipy = 2,2'-bipyridine), Auphen [Au(phen)Cl]+ (phen = phenanthroline), Auterpy [Au(terpy)Cl]2+ (terpy = 2,2';6',2″-terpyridine), and corresponding hydrolyzed species, have been investigated as inhibitors of the Plasmodium falciparum aquaglyceroporin (PfAQP) protein by computational methods. Through an in-silico approach using an Umbrella Sampling protocol to sample how Aubipy, Auphen, and Auterpy permeate through the PfAQP, their permeability coefficients were estimated using the Inhomogeneous Solubility Diffusion (ISD) model with promising results. The efficacy of the gold complexes was then probed by an in vitro assay testing the growth inhibition in chloroquine sensitive and resistant P. falciparum strains. In accordance with the computational data, Auterpy achieved the highest efficiency with an IC50 in the nanomolar range (590nM) on resistant strain cultures, additionally revealing a good selectivity as compared to its activity against the human aquaglyceroporin 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.