Abstract

In the asphalt materials community, the most critical research need is centered around a paradigm shift in mixture design from the volumetric process of the previous 20-plus years to an optimization procedure based on laboratory-measured mechanical properties that should lead to an increase in long-term pavement performance. This study is focused on advancing the state of understanding with respect to the value of intermediate temperature cracking tests, which may be included in a balanced mix design. The materials included are plant-mixed, laboratory-compacted specimens reheated from the 2013 Federal Highway Administration’s (FHWA’s) Accelerated Loading Facility (ALF) study on reclaimed asphalt pavement/reclaimed asphalt shingle (RAP/RAS) materials. Six commonly discussed intermediate temperature (cracking and durability) performance testing (i.e., Asphalt Mixture Performance Tester [AMPT] Cyclic Fatigue, Cantabro, Illinois Flexibility Index Test [I-FIT], Indirect Tensile Cracking [ITC, also known as IDEAL-CT], Indirect Tensile Nflex, and Texas Overlay Test) were selected for use in this study based on input from stakeholders. Test results were analyzed to compare differences between the cracking tests. In addition, statistical analyses were conducted to assess the separation among materials (lanes) for each performance test. Cyclic fatigue and IDEAL-CT tests showed the most promising results. The ranking from these two tests’ index parameters matched closely with ALF field performance. Furthermore, both showed reasonable variability of test data and they were successful in differentiating between different materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.