Abstract
During last decade, researchers’ interest in nanotechnology applications, particularly in the field of pavement materials, has been increasing. This research work focused on the investigation of the properties of asphalt binder modified with different percentages of two different nanomaterials. These materials are nanoclay, and nanosilica. The nanosilica was manufactured from two different sources: silica fume and rice husk. Nanomaterials and asphalt binder were first characterized. A mechanical mixer was then used at 1500rpm to mix the nanomaterials with the binder. Required mixing time was determined. Three different nanomaterial percentages were mixed with the binder. The modified binders were tested for rheological properties. Results showed that, nanosilica synthesized from silica fume tends to decrease the penetration value and increase the softening point temperature. The nanoclay on the other hand was found to increase the penetration and decrease the softening point temperature. At temperature of 135°C and up to 150°C, increasing nanosilica percentage was found to increase Brookfield Rotational Viscosity (RV), while nanoclay, at small percentages, increased the RV and then decreased it at higher percentages. At higher temperature, up to 165°C, the RV values did not change significantly using both nanomodifiers. Nanosilica from rice husk showed improvement in the RV results. Finally, the Dynamic Shear Rheometer (DSR) results showed obvious improvement in the performance grade leading to higher resistance to permanent deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.