Abstract

Attenuation correction aims to recover the underestimated tracer uptake and improve the image contrast recovery in positron emission tomography (PET). However, traditional ray-tracing-based projection of attenuation maps is inaccurate as some physical effects are not considered, such as finite crystal size, inter-crystal penetration and inter-crystal scatter. In this study, we evaluated the effects of applying resolution modeling (RM) to attenuation correction by implementing space-variant RM to complement physical effects which are usually omitted in the traditional projection model. We verified this method on a brain PET scanner developed by our group, in both Monte Carlo simulation and real-world data, in comparison with space-invariant Gaussian RM, average-depth-of-interaction, and multi-ray tracing methods. The results indicate that the space-variant RM is superior in terms of artifacts reduction and contrast recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.