Abstract

Design of blood compatible surfaces is required to minimize platelet surface interactions and increase the thromboresistance of foreign surfaces when they are used as biomaterials especially for artificial blood prostheses. In this study, single wall carbon nanotubes (SWCNTs) and Zein fibrous nanocomposite scaffolds were fabricated by electrospinning and evaluated its antithrombogenicity and hydrophilicity. The uniform and highly smooth nanofibers of Zein composited with different SWCNTs content (ranging from 0.2 wt% to 1 wt%) were successfully prepared by electrospinning method without the occurrence of bead defects. The resulting fiber diameters were in the range of 100–300 nm without any beads. Composite nanofibers with and without SWCNT were characterized through a variety of methods including scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and tensile mechanical testing. The water uptake and retention ability of composite scaffolds decreased whereas thermal stability increased with an addition of SWCNTs. Hemolytic property and platelet adhesion ability of the nanocomposite (Zein-SWCNTs) were explored. These observations suggest that the novel Zein-SWCNTs composite scaffolds may possibly hold great promises as useful antithrombotic material and promising biomaterials for tissue engineering application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.