Abstract

Sugarcane leaf (SL) is an attractive lignocellulosic feedstock for methane production by anaerobic digestion (AD), but the resistant structure and irregular components of SL hinder its effective use. To provide a comprehensive understanding of the different SL components, the physicochemical properties, methane production performance, and a techno-economic analysis (TEA) of the mesophyll (SL-MPL) and midrib (SL-MRB) parts of SL were investigated in this study. The results showed that the chemical components, physical properties, and structures of SL-MPL and SL-MRB were markedly different. After AD, SL-MPL showed methane production of 124.2 ± 8.5 mL/g volatile solid (VS), which was 121.4% higher than that of SL-MRB. Besides, the VS removal and hydrolysis rates for SL-MPL were 1.4 and 2.9 times higher than those for SL-MRB, respectively. The AD of SL-MRB was predominantly limited by its high lignin content, low nutrient element contents, smooth surface, and dense spatial structure. The TEA revealed that the revenue from SL-MPL was 74.9% of total revenue in the AD scenario, which was three times that of SL-MRB. Therefore, SL-MPL was more techno-economically efficient than SL-MRB under the AD scenario. This study provides a theoretical basis and data support for the effective utilization of SL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call