Abstract

Over the past decades, starting from crude cell extracts, a variety of successful preparation protocols and optimized reaction conditions have been established for the production of cell‐free gene expression systems. One of the crucial steps during the preparation of cell extract‐based expression systems is the cell lysis procedure itself, which largely determines the quality of the active components of the extract. Here we evaluate the utility of an E. coli cell extract, which was prepared using a combination of lysozyme incubation and a gentle sonication step. As quality measure, we demonstrate the cell‐free expression of YFP at concentrations up to 0.6 mg/mL. In addition, we produced and assembled T7 bacteriophages up to a titer of 108 PFU/mL. State‐of‐the‐art quantitative proteomics was used to compare the produced extracts with each other and with a commercial extract. The differences in protein composition were surprisingly small between lysozyme‐assisted sonication (LAS) extracts, but we observed an increase in the release of DNA‐binding proteins for increasing numbers of sonication cycles. Proteins taking part in carbohydrate metabolism, glycolysis, amino acid and nucleotide related pathways were found to be more abundant in the LAS extract, while proteins related to RNA modification and processing, DNA modification and replication, transcription regulation, initiation, termination and the TCA cycle were found enriched in the commercial extract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.