Abstract

Abstract A fully-automated controller in the artificial pancreas (AP) system designed to regulate blood glucose concentration can give better lifestyle to a type 1 diabetic patient. This paper deals with evaluating the benefit of fully-automated online-tuned controller for the AP system over offline-tuned and semi-automated controller based on internal model control (IMC) strategy. The online-tuned controller is fully-automatic in the sense that it can automatically deal with intra- and inter-patient variabilities and compensate for unannounced meal disturbances without any prior knowledge of patient parameters, patient specific characteristics or patient specific input–output data. A data driven Volterra model of patients is used to design IMC algorithms. For online-tuned controller, the Volterra kernels of the model are computed online by recursive least squares algorithm. The IMC algorithms are evaluated using different scenarios in the UVA/Padova metabolic simulator for validation, comparison with a fully-automatic zone model predictive controller and robustness analysis. Unlike offline-tuned IMC and semi-automated IMC, the online-tuned IMC in the AP system performs satisfactorily for every patient condition without patients’ intervention. Experimental results show that the online-tuned IMC compensates unannounced meal disturbances with low frequency of hypoglycemic events and most importantly, with low insulin infusion even with variations in insulin sensitivity, in the presence of irregular amounts of meal disturbances at random times, and in the presence of very high noise levels in the sensors and actuators. Patients experience hypoglycemia 0.46%, 1.01% and 20% of the time using online-tuned, offline-tuned and semi-automated IMC respectively when the insulin sensitivity is increased by +20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.