Abstract
As the magnetic data storage industry strives to achieve ultra-high recording densities requiring fly heights of less than one microinch, the tribology of the head-disk interface (HDI) is a limiting factor in disk drive design. Amorphous diamond-like-carbon (DLC) films have been the materials of choice for wear-protective coatings. Various amorphous DLC type coatings have been developed. The earliest DLC material was DC magnetron sputtered pure carbon films. Recent developments have produced C:H (hydrogenated-carbon) and C:N (carbon-nitrogen) films with greater wear-resistance than pure C film. Our intent is to describe and evaluate the wear-resistance performance of amorphous C:N films as wear-protective overcoats on thin film media and thin film sliders. Both C:H and C:N films have demonstrated superiority over DC magnetron sputtered pure carbon films. The bond character, microhardness, surface roughness features, and the physical nature of initial wear damage influence wear-resistance performance significantly. A recent report of nano-indentor measurements and wear-resistance performance confirmed the superiority of RF diode and DC magnetron Facing Target Sputtering (FTS) of thin C:N coatings over other DLC films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.