Abstract

This study characterized and evaluated the use of reclaimed fly ash (RFA) and reclaimed ground bottom ash (GBA) as alternative sources of supplementary cementitious materials (SCMs) for the production of concrete mixtures. Conventional Class F fly ash (FA) was also evaluated for comparison. The effects of SCM content on fresh and hardened properties of concrete were investigated by replacing 10%, 20%, and 30% of cement by mass. Characterization results showed that all three ashes met ASTM C618 chemical requirements (i.e., sum of SiO2 + Al2O3 + Fe2O3, CaO, SO3, moisture content, and loss of ignition) and 7- and 28-days strength activity index (SAI) requirements for Class F FA. In addition, RFA exhibited slightly higher SAI at 28 days of curing, followed by GBA and FA. In relation to fresh concrete properties, FA increased the concrete slump compared with the control mixture, whereas RFA and GBA decreased the concrete slump. However, GBA produced more significant slump decrements than RFA, which was attributed to the irregular angular particles of GBA. Generally, all the coal ashes produced decrements in air content compared with the control mixture. Comparatively, among the three ashes, GBA exhibited the highest 28- and 90-days compressive strength and surface resistivity (SR) at all cement replacement levels. Furthermore, at 90 days of curing, RFA and GBA concrete mixtures outperformed the FA concrete mixtures in relation to compressive strength and SR. Consequently, both RFA and GBA are promising SCMs for concrete materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call