Abstract

ABSTRACT Adsorption isotherm is essential for predicting its mechanisms, which are important for potassium (K) fertilizer application and to recommendation appropriate rates for acidic soils. Thus, the objective of this study was to evaluate K adsorption characteristic of the selected soils by comparing different adsorption models with soil properties of the soil in different districts (Sodo Zurie, Damot Gale, Damot Sore and Boloso Sore) in the Wolaita Zone of Southern Ethiopia. Four adsorption isotherms are: Langmuir, Freundlich, Temkin, and Van Huay were used to describe adsorption processes. Composite surface (0-20 cm) depth soil samples from four districts sites were collected. The results revealed that the K adsorption data coincide with both models with (r2 = 0.99). However, Freundlich model was better in describing K adsorption than the other model. The adsorption maxima(ad(max), distribution coefficient, buffer capacity (BC), and adsorption capacity(a(capacity) values of soils ranged from -333 to334.5,0.54 to78.7,159.9 to 389.3, and 327 to 417mg Kkg-1 respectively, these results showed that Sodo Zurie, Bolos Sore and Demote Sore were effective model parameters. Van Huay a(capacity) 417mg Kkg-1 while the bonding energy constant Langmuir is -0.075mg Kkg-1 in Bolos Sore soil compared to other soils, which were found to be more valuable in discriminating between high K adsorption soils. Correlation between some soil properties with ad(max) were positively a highly correlated with clay, pH, organic carbon (OC) and exchangeable potassium with r2 = 0.92**, 0.93**, 0.95** and 0.96 ** respectively, but negatively correlated with bonding energy with r2= -0.79, -0.80,-0.77 and -0.72 respectively, while calcium carbonate (CaCO3) was very highly correlated with ad(max) r2= 0.99***). The Freundlich constant, Temkin BC, and Van Hauy a(capacity) were correlated with CaCO3 content soils with r2=0.12,-0.01,and 0.12,respectively, while slope (1/n) was significantly negatively correlated with soil cation exchange capacity (CEC), CaCO3, clay contents and exchangeable K and Mg2+ with r2= 0.04, -0.67, -0.78, -0.69, and –0.69, respectively. These findings reveal the extent of K depletion in the soils of Wolaita providing a baseline for K rates required for crop production and validation of all models through real-time experiments in the field; this is recommended before the models are used on a large scale basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.