Abstract

ObjectiveGood's buffer or HEPES has advantages over other buffers commonly used in radiopharmaceutical preparation as it exhibits significantly lower complexation tendency with metal ions. However, use of HEPES buffer for radiolabeling reactions, meant for clinical applications, has been underrated due to the non-availability of sufficient toxicity data. The objective of the present study is to find the evidences towards safety of intravenous administration of HEPES through systemic toxicological studies in small animal model to support its safe application for clinical exploitation. ExperimentalA pilot study was performed to investigate the lethal dose of HEPES in female Sprague Dawley rats by administering seven different doses of HEPES solution (150 to 2000 mg/kg), through intravenous pathway. Similarly, for determining maximum tolerated dose (MTD), gradually increasing doses of HEPES (50 to 950 mg/kg) were administered in the same species via similar pathway. Various hematological and clinical pathological investigations were carried out in order to find out the safe administration dose of HEPES in rats. ResultsNo mortality was observed up to 2000 mg/kg doses of HEPES. The doses beyond 300 mg/kg resulted few temporary adverse effects, though these were found to disappear within 4–5 days of dosing. ConclusionThe amount of HEPES to be administered during clinical intervention is usually much lower (typically 1–2.5 mg per kg of body weight of healthy adult) than the MTD determined in rat model during present report. Hence, the utilization of this buffer for preparation of radiolabeled drugs for human investigation may be safe. However, further detailed investigations may be warranted for supporting the candidature of Good's buffer for regular clinical exploitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.