Abstract
ABSTRACT Resampling historical time series remains one of the main approaches used to generate long-term probabilistic streamflow forecasts, while there is a need to develop more flexible approaches taking into account non-stationarities. One possible approach is to use a modelling chain consisting of a stochastic weather generator and a hydrological model. However, the ability of this modelling chain to generate adequate probabilistic streamflows must first be evaluated. The aim of this paper is to compare the performance of a stochastic weather generator against resampling historical meteorological time series in order to produce ensemble streamflow forecasts. The comparison framework is based on 30 years of forecasts for a single Canadian watershed. Forecasts resulting from the two methods are evaluated using the continuous ranked probability score (CRPS) and rank histograms. Results indicate that while there are differences between the methods, they nevertheless perform similarly, thus showing that weather generators can be used as substitutes for resampling the historical past.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have