Abstract

BackgroundFeasibility and costs of monitoring efforts aimed to monitor mosquito species are strictly dependent on the presence of skilled entomologists directly in the field. However, in several contexts this is not possible or easy to organize, thus limiting the possibility to obtain crucial information on presence/abundance of potential disease vectors and of new invasive species. Digital imaging approaches could be extremely useful in the frame of medical entomology to overcome this limit. This work describes a surveillance approach to collect and morphologically identify host-seeking malaria vectors based on remote transmission of digital images of specimens collected with ad hoc modified traps.MethodsCDC light trap (CDC) and the BG-Sentinel trap (BG), both baited with BG-lure and CO2, were modified in order to have collected mosquitoes immobilized on a bi-dimensional surface. The performance of the two traps in the field was comparatively tested by Latin-square experiments in two villages of Burkina Faso under low and high mosquito densities. The efficiency of identifications based the inspection of digital images versus microscopic identifications of collected specimens was compared.ResultsA total of 1,519 mosquitoes belonging to 16 species were collected, of which 88.5% were microscopically identified as Anopheles gambiae s.l. (mainly Anopheles coluzzii, 85.7%). During dry season BG collected 15 times more females than CDC outdoors, whereas indoors the BG collected 0.4 times less than CDC. During rainy season the ratio BG/CDC was 6.4 and 0.7 outdoors and indoors, respectively. The efficiency of digital images versus microscopic identifications of collected specimens was 97.9%, 95.6% and 81.5% for Culicidae, Anophelinae and An. gambiae s.l., respectively.ConclusionsResults strongly encourage the use of BG-trap for collecting host-seeking An. gambiae particularly in the outdoor environment, providing new perspectives to the challenge of collecting this fraction of the biting population, whose epidemiological relevance is increasing due to the success of large-scale implementation of indoor malaria vector control strategies. Moreover, results show that the transmission of digital images of specimens collected by the ad hoc modified host-seeking traps efficiently allows identification of malaria vectors, thus opening the perspective to easily carry out mosquito monitoring also in the absence of entomologists directly in the field.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0674-7) contains supplementary material, which is available to authorized users.

Highlights

  • Feasibility and costs of monitoring efforts aimed to monitor mosquito species are strictly dependent on the presence of skilled entomologists directly in the field

  • The performance of the two traps in two villages of Burkina Faso was compared both in indoor and outdoor environments, assessing the efficiency of the identifications based on digital images with that of microscopic identification, taken as reference method

  • A total of 1,519 mosquitoes belonging to 16 species was collected and 1,345 (88.5%) of these were microscopically identified as Anopheles gambiae s.l

Read more

Summary

Introduction

Feasibility and costs of monitoring efforts aimed to monitor mosquito species are strictly dependent on the presence of skilled entomologists directly in the field. The presence in the field of specialized entomologist(s) is, nowadays, a sine qua non condition for surveillance/monitoring activities aimed to quickly obtain information about the presence of insect pests or of new invasive species. This need significantly complicates the logistic of the monitoring schemes and increases their costs. These issues could be overcome by a system relying on remote transmission of digital images of collected insect samples to a reference laboratory for species identification

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.