Abstract

Abstract Road surface temperatures are a critical factor in determining driving conditions, especially during winter storms. Road temperature observations across the United States are sparse and located mainly along major highways. A machine learning–based system for nowcasting the probability of subfreezing road surface temperatures was developed at NSSL to allow for widespread monitoring of road conditions in real time. In this article, these products were evaluated over two winter seasons. Strengths and weaknesses in the nowcast system were identified by stratifying the evaluation metrics into various subsets. These results show that the current system performed well in general, but significantly underpredicted the probability of subfreezing roads during frozen precipitation events. Machine learning experiments were performed to attempt to address these issues. Evaluations of these experiments indicate reduction in errors when precipitation phase was included as a predictor and precipitating cases were more substantially represented in the training data for the machine learning system. Significance Statement The purpose of this study is to better understand the strengths and weaknesses of a system that predicts the probability of subfreezing road surface temperatures. We found that the system performed well in general, but underpredicted the probabilities when frozen precipitation was predicted to reach the surface. These biases were substantially improved by modifying the system to increase its focus on situations with falling precipitation. The updated system should allow for improved monitoring and forecasting of potentially hazardous conditions during winter storms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call