Abstract
A point-of-use prototype electrocoagulation treatment system was designed and evaluated for its ability to remove arsenic from a synthetic groundwater. The system was comprised of an electrocoagulation reactor providing batch treatment, a rechargeable battery power source, an electrical monitoring and control module, and a granular media filter. The control module and the filter underdrain system were designed to improve user convenience. The system was able to consistently reduce arsenic concentrations to below 20 µg/L. Effluent soluble arsenic concentrations under 10 µg/L were deemed possible with enhanced effluent suspended solids removal techniques. Arsenic removal was found to be a function of the initial arsenic concentration and the cumulative charge dosage as measured in coulombs per liter of water treated. The steel plate size used in the electrocoagulation module influenced the current draw and the overall electrical efficiency of the system. The monitoring and control module allowed the system to produce up to 100 liters of treated water daily on a single battery charge and would automatically control charge and iron dosage. The point-of-use system was capable of meeting household potable demands for water where other treatment options are limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Service Learning in Engineering, Humanitarian Engineering and Social Entrepreneurship
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.